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The dynamic response of an initially spherical capsule subject to different externally
imposed flows is examined. The neo-Hookean and Skalak et al. (Biophys. J., vol. 13
(1973), pp. 245–264) constitutive laws are used for the description of the membrane
mechanics, assuming negligible bending resistance. The viscosity ratio between the
interior and exterior fluids of the capsule is taken to be unity and creeping-flow condi-
tions are assumed to prevail. The capillary number ε is the basic dimensionless number
of the problem, which measures the relative importance of viscous and elastic forces.
The boundary-element method is used with bi-cubic B-splines as basis functions in
order to discretize the capsule surface by a structured mesh. This guarantees continuity
of second derivatives with respect to the position of the Lagrangian particles used for
tracking the location of the interface at each time step and improves the accuracy of
the method. For simple shear flow and hyperbolic flow, an interval in ε is identified
within which stable equilibrium shapes are obtained. For smaller values of ε, steady
shapes are briefly captured, but they soon become unstable owing to the development
of compressive tensions in the membrane near the equator that cause the capsule to
buckle. The post-buckling state of the capsule is conjectured to exhibit small folds
around the equator similar to those reported by Walter et al. Colloid Polymer Sci.
Vol. 278 (2001), pp. 123–132 for polysiloxane microcapsules. For large values of ε,
beyond the interval of stability, the membrane has two tips along the direction of
elongation where the deformation is most severe, and no equilibrium shapes could be
identified. For both regions outside the interval of stability, the membrane model is
not appropriate and bending resistance is essential to obtain realistic capsule shapes.
This pattern persists for the two constitutive laws that were used, with the Skalak et al.
law producing a wider stability interval than the neo-Hookean law owing to its strain
hardening nature.

1. Introduction
We consider the deformation of a liquid-filled capsule enclosed by a thin hyperelastic

membrane, suspended in another flowing liquid. This situation is encountered in many
biomedical or industrial applications where encapsulation of living cells, or of active
agents in a protecting membrane, is necessary. It is then important to assess the
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response of the capsule to the imposed external stresses and, in particular, to predict
the onset of burst. However, experimental and theoretical studies have underlined the
complex mechanical interaction of different physical properties of the capsule such as
geometry, membrane constitutive law and rheology of the internal medium. Here, we
concentrate on initially spherical capsules, filled with a Newtonian liquid with viscosity
λµ and study the influence of the membrane constitutive law on their motion and
deformation when they are freely suspended in a three-dimensional Stokes flow with
viscosity µ.

Some experimental results regarding the behaviour of artificial capsules in flow are
available. In particular, Barthès-Biesel (1991) and Chang & Olbricht (1993a) have
studied the deformation of artificial capsules freely suspended in a planar hyperbolic
flow created in the centre of a four-roller flow cell. Chang & Olbricht studied the effect
of shear rate on nylon membrane capsule deformation, but do not report any breakup
of the particle in the range of tested shear rates. Barthès-Biesel reports that, under
large shear stress, a capsule with a polylysine membrane develops high-curvature tips
where the membrane is punctured.

Capsules in simple shear flow have been studied experimentally by Chang &
Olbricht (1993b) and by Walter, Rehage & Leonhard (2000, 2001) in a counter-
rotating Couette device. After a short transient time, the capsule reaches a steady
shape around which the membrane rotates. This rotation, first described for red blood
cells, is called the tank-treading motion (Schmid-Schönbein & Wells 1960). Con-
sequently, the inner fluid of the capsule is still in motion and the value of the viscosity
ratio λ affects the capsule response (Pfafferott, Wenby & Meiselman 1985). For λ� 1,
Chang & Olbricht (1993b) find that the capsule will burst for large enough shear
rates. The breakup point is located at the tip of the capsule, where the curvature is
large. Walter et al. (2000) do not reach large enough shear rates to observe burst.

Asymptotic solutions for initially spherical capsules suspended in weak linear shear
flows have been obtained by Barthès-Biesel (1980) and by Barthès-Biesel & Rallison
(1981) who have calculated the deformation of the capsule. In simple shear flow, this
model predicts the tank-treading motion of the membrane with an angular frequency
equal to the suspending flow rotation rate. Large deformations of capsules in un-
bounded shear flow have been modelled numerically by a number of authors. Different
membrane constitutive laws have been considered as well as different flow situations.
In some cases, the membrane is assumed to be a thin sheet of a volume incompressible
material described by a neo-Hookean elastic law (Li, Barthès-Biesel & Helmy 1988;
Eggleton & Popel 1998; Ramanujan & Pozrikidis 1998; Diaz, Pelekasis & Barthès-
Biesel 2000). Area incompressible membranes have been considered to model the
behaviour of red blood cells (Eggleton & Popel 1998; Ramanujan & Pozrikidis 1998)
or lipid vesicles (Kraus et al. 1996). The bending rigidity of the membrane has also
been taken into account (Kraus et al. 1996; Kwak & Pozrikidis 2001; Pozrikidis
2001). On the numerical side, different versions of the boundary-integral method have
been used for modelling large deformations of capsules in uniaxial extensional flow
(Li et al. 1988; Pozrikidis 1990; Diaz et al. 2000; Kwak & Pozrikidis 2001) and in
simple shear flow (Kraus et al. 1996; Navot 1998; Ramanujan & Pozrikidis 1998;
Pozrikidis 2001). Eggleton & Popel (1998) used the immersed boundary method and
were able to recover some findings of the above studies for the case of simple shear
flow. However, owing to the additional computational load required by this method,
they could only follow the capsule response over relatively short times.

The first study of the response of a spherical capsule suspended in simple shear flow
(Pozrikidis 1995) predicted a critical value of the shear rate past which no equilibrium
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could be obtained and burst was conjectured to occur. Ramanujan & Pozrikidis (1998)
investigated the effect of the viscosity ratio λ and were able to follow the deformation
of initially spherical, ellipsoidal or area-incompressible biconcave capsules over a
wide range of shear rates. They concluded that the capsule showed no tendency to
break up. Navot (1998) considered another constitutive law for the elastic tensions
in the membrane, modelled as a network of connected springs. He was able to reach
very large deformations and to investigate the long-time tank-treading motion of the
membrane for λ= 1, and did not observe breakup of the capsule.

When an unstructured mesh is used to discretize the membrane (Navot 1998;
Ramanujan & Pozrikidis 1998), it is necessary to resort to approximations to calculate
the surface gradient of the elastic tensions in the membrane. In particular, the load
is averaged over an element in the boundary integral. Although this procedure must
converge towards the true solution as the mesh size decreases, it may induce smoothing
out of a potential instability. Our own experience with axisymmetric problems
involving large deformations of an elastic interface has shown the importance of a very
precise description of the deformed membrane geometry. Diaz et al. (2000) used a
cubic B-spline interpolation of the meridian of an axisymmetric capsule and obtained
very good accuracy with a reasonable number of points. Hence, we have focused our
efforts on a precise description of the three-dimensional membrane geometry and me-
chanics. Lagrangian tracking of the interface is performed and the mechanical problem
is expressed in general curvilinear coordinates on a time-dependent Lagrangian mesh,
as described in § 2.2. The boundary-element method is used in conjunction with surface
interpolation by means of bi-cubic B-splines. This allows a continuous description
of the geometric characteristics of the interface up to second-order properties, such
as curvature. The first goal of this study is to show the efficiency of our numerical
method in modelling large or small membrane deformation accurately. Then, we shall
investigate the limit of validity of the mechanical model when bending resistance is
neglected. We find that under small viscous load compared to elastic stresses, the equi-
librium deformation of the capsule is unstable and that the membrane tends to buckle,
as observed experimentally (Walter et al. 2001). The last goal is to study the influence
on capsule deformation of different membrane constitutive laws and different Stokes
flow situations. We shall consider only capsules with an initially spherical shape,
which corresponds to the typical geometry of artificial capsules.

The physical problem (fluid dynamics and membrane mechanics) is presented
briefly in § 2. Section 3 is devoted to the numerical method and its validation in
terms of numerical convergence and comparison with previous numerical studies by
Ramanujan & Pozrikidis (1998). Finally, results are presented for a spherical capsule in
simple shear flow (§ 4), in hyperbolic flow (§ 5) and in axisymmetric elongational flow
(§ 6). They are compared to theoretical predictions in the limit of small deformations,
to previous numerical results and, when possible, to experimental data. An overall
discussion is presented in the last section and directions for future work are proposed.

2. Problem statement
The physical assumptions related to the deformation and motion of deformable

liquid-filled capsules are presented only briefly in this section, since it is now a classical
problem. For further details, see papers by Barthès-Biesel et al. and by Pozrikidis et al.

2.1. Motion of the internal and external liquids

We consider an initially spherical capsule of radius a, consisting of a liquid droplet
enclosed by an infinitely thin elastic membrane M , suspended in an unbounded shear
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Figure 1. Capsule in Stokes flow.

flow of velocity v∞ and shear rate γ̇ (figure 1). Both fluids are supposed to be
Newtonian and to have equal dynamic viscosity µ (i.e. λ = 1) and density ρ The
interface obeys a simple membrane model, with negligible bending resistance. We also
assume that it is purely elastic and characterized by a surface shear modulus Gs and
an area dilation modulus K .

Computing the deformation and the position of the free surface requires the velocity
field on the membrane. Because of the small dimensions of the particle, the Reynolds
number ργ̇ a2/µ is very small and the Stokes equations apply for both the internal
and external fluid motion. Under this assumption, the interfacial velocity v at a point
x on the membrane is expressed by means of an integral equation (Rallison & Acrivos
1978; Pozrikidis 1992)

v(x) = v∞(x) − 1

8πµ

∮
M

J(x, y) · � f ( y) dS( y), (2.1)

where � f represents the jump of viscous traction across the interface and the kernel
J is a free-space Green’s function defined as

Jij (x, y) =
δij

r
+

rirj

r3
, (2.2)

with r = x − y and r = ‖r‖.

2.2. Membrane mechanics

Since the membrane is supposed to be infinitely thin, the jump of viscous traction � f
is equal to the elastic load on the membrane. It is then related to the elastic tension
tensor T in the interface by the membrane equilibrium equation

∇s · T + � f = 0, (2.3)

where ∇s represents the gradient in the membrane surface. The problem is closed with
a constitutive equation describing the elastic behaviour of the membrane.

The position of points at the interface is defined by means of two independent
parameters θ1 and θ2. After the start of the flow, a material point X(θ1, θ2) of the
unstressed membrane is convected to position x(θ1, θ2, t). Consequently, the kinematic
condition at the interface reads

∂

∂t
x(θ1, θ2, t) = v(x, t). (2.4)

The membrane mechanics problem is expressed in the curvilinear coordinate system
defined by θ 1 and θ2 (Green & Adkins 1960). Note that the convected coordinate lines
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θα = constant do not necessarily coincide with the principal directions of deformation.
Except when indicated, Greek indices are equal to 1 or 2, and repeated indices are
summed. Capital and lowercase letters denote quantities in the initial unstressed
and deformed states, respectively. Local covariant and contravariant basis (a1, a2, n),
(a1, a2, n), (A1, A2, N) and (A1, A2, N) are defined where n and N denote unit outer
normal vectors to the surface and where the non-unit tangent vectors to coordinate
lines are aα = ∂x/∂θα and Aα = ∂X/∂θα . The components of the associated metric
tensors are aαβ = aα · aβ , Aαβ = Aα · Aβ , etc. Invariants of the transformation may be
defined as (Green & Adkins 1960)

I1 = Aαβaαβ − 2 = λ2
1 + λ2

2 − 2, I2 = det(Aαβ) det(aαβ) − 1 = J 2
s − 1, (2.5)

where λ1 and λ2 denote the extension ratios in the principal strain directions. Physi-
cally, Js = λ1λ2 represents the ratio between the deformed and the undeformed local
surface areas.

In the case of a plane isotropic hyperelastic material, the contravariant components
of the tension tensor T are related to a strain energy function W (I1, I2),

T αβ =
2

Js

∂W

∂I1

Aαβ + 2Js

∂W

∂I2

aαβ. (2.6)

The membrane equilibrium equation (2.3) becomes

∂T αβ

∂θα
+ Γ α

αλT
λβ + Γ

β

αλT
αλ + �f β = 0 (β = 1, 2), (2.7)

T αβbαβ + �f n = 0,

where the load is expressed in the local covariant basis � f = �f β aβ + �f nn. The

Christoffel symbols are defined by Γ
β

αλ =(∂aα/∂θλ) · aβ and the curvature tensor by
bαβ = n · (∂aα/∂θβ).

2.3. Constitutive equation for the elastic tensions

Barthès-Biesel, Diaz & Dhenin (2002) discussed different constitutive laws classically
used to describe thin hyperelastic interfaces. Membranes made of polymerized media
are usually modelled as thin sheets of a volume-incompressible isotropic material
with initial uniform thickness. The area dilation due to deformation is then balanced
by the thinning of the membrane. The simplest constitutive equation is then the
two-dimensional form of the neo-Hookean law (NH)

WNH = 1
2
Gs

(
I1 − 1 +

1

I2 + 1

)
. (2.8)

where Gs is the surface shear elastic modulus. Ramanujan & Pozrikidis (1998) used
another version of (2.8), which they call the zero-thickness shell formulation

WRP = 1
2
Gs

[
I1 − log(I2 + 1) + 1

2
log2(I2 + 1)

]
. (2.9)

The two strain energy functions WNH and WRP are equivalent for small deformation,
but lead to different tension–deformation relations for large strains.

Starting from general principles of elasticity, Skalak et al. (1973) proposed another
law (SK), valid for plane-isotropic materials

W SK = 1
4
Gs

((
I 2
1 + 2I1 − 2I2

)
+ C

(
J 2

s − 1
)2)

. (2.10)

The first term of the right-hand side of (2.10) accounts for shearing effects, while
the second term accounts for area dilation, with associated moduli Gs and CGs. The
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SK law, initially proposed for area incompressible biological membranes (C � 1), can
also be used to model other interfaces for which C is of order 1.

The neo-Hookean law and the Skalak et al. law are linear in the domain of small
deformations, with surface Poisson ratio given, respectively, by νs =1/2 and νs = C/

(1 + C), surface Young modulus by ENH
s = 3Gs and ESK

s = 2Gs(2 + C)/(1 + C), area
dilation modulus by KNH = 3Gs and KSK = Gs(1 + 2C). For C = 1, the NH and SK
laws have the same small-deformation behaviour. For large strains, however, they
predict different material responses. For example, in uniaxial extension, the NH law
appears to be strain-softening, whereas the SK law is strain hardening (Barthès-Biesel
et al. 2002).

Navot (1998) has introduced a constitutive law for a polymeric material described
as a network of connected springs. In the continuum limit, it is equivalent to the
strain energy

W = kI1, (2.11)

where k is an elastic constant of the material. This law allows for very large deforma-
tions of the capsule, as discussed in § 4.2.

Dimensional analysis of the problem shows that an important parameter is the
capillary number ε = µγ̇ a/Gs , which measures the ratio between the viscous forces
exerted by the fluids and the elastic resistance of the membrane. Note that ε = 3G,
where G =µγ̇ a/Es is the capillary number based on Young’s modulus, used by
Ramanujan & Pozrikidis (1998). In addition, ε =3p/10 where p is the dimensionless
shear rate used by Navot (1998).

It is usually possible to obtain an equilibrium solution to the set of equations (2.3)–
(2.11), but the stability of this solution must be checked. Indeed, if compression occurs,
it is well known from shell theory (Timoshenko & Gere 1961) that a thin shell will
buckle when the compressive stress exceeds a critical value. For small deformations,
this value is proportional to the bending modulus of the shell. Buckling leads to
deformations normal to the shell plane with a wavelength that is also proportional to
the bending modulus. Consequently, if the capsule interface has no bending stiffness,
as assumed here through (2.3), it cannot sustain any compressive stress and will buckle
as soon as one of the two principal tensions becomes negative. A simple stability
criterion is thus that the tensions T1 and T2 in the principal strain directions 1 and 2
should both be positive. When parameter C vanishes in the SK law, we note that
the condition Tα � 0 is equivalent to λα � 1 (α =1, 2). This means that the membrane
must be stretched in the two principal directions simultaneously. In our case, we did
not find a deformed shape for which the volume is conserved and the membrane
is stretched everywhere in both directions. Consequently, we considered values of C

greater than zero, for which the area dilation modulus is always larger than the shear
modulus.

For the strain energy function (2.11), we find from (2.6) that T1 = kλ1/λ2 and T2 =
kλ2/λ1. The tensions are always positive and the membrane is stretched everywhere
whatever its deformation may be.

3. Numerical method
3.1. Boundary-element method

In order to evaluate the forces on the membrane, to determine the metrics of the
surface and, finally, to obtain the interfacial velocity by numerical integration, we
must interpolate the position vector as well as the other dependent variables of the
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problem on the surface of the capsule. A classical approach to interface tracking for
deformable particles uses a structured mesh (e.g. Li et al. 1988; Pozrikidis 1990, 1995)
that is defined through a proper parametric description of the interface. In the latter
study, for example, the surface nodes are defined by means of the meridional and
azimuthal angles, whereas a flat triangular representation is adopted for the surface
elements. However, questions were raised by Ramanujan & Pozrikidis (1998) as to
the reliability of this approach, owing to the singular nature of the two poles. This
has led to an increasing interest in unstructured mesh descriptions, because of the
larger flexibility that they offer, despite increased complexity in local topology. Indeed,
several investigators have discretized the surface with an unstructured grid using flat
triangular elements (e.g. Kraus et al. 1996; Navot 1998) or with bi-quadratic six-node
triangular elements (e.g. Ramanujan & Pozrikidis 1998). In this context, Ramanujan &
Pozrikidis (1998) and Navot (1998) concluded that a steady shape existed for initially
spherical capsules under external simple shear flow, irrespective of the shear rate
intensity. This reverts the findings of Pozrikidis (1995) with a structured mesh, namely
that a critical shear rate exists beyond which the capsule continuously elongates
and finally bursts. In an effort to resolve this issue and in view of the very good
performance of boundary elements on cubic B-splines in axisymmetric configurations
(Diaz et al. 2000), we decided to extend this method to model general surfaces. To this
end, we use a structured mesh and describe the surface of the capsule with bi-cubic
B-spline functions that depend on two independent parameters θ 1 and θ2. After the
start of the flow, the position x of a point on the membrane at time t is expressed as
a sum of cubic polynomial basis functions Bk

x(θ1, θ2, t) =
∑
k,l

x̄kl(t)Bk(θ
1)Bl(θ

2), (3.1)

where x̄kl are the spline coefficients associated with x. In this fashion, it is convenient
to interpolate any dependent variable as a function of θα , while the degree and nature
of the basis functions ensures continuity of x and of its derivatives up to second
order along the interface (Prenter 1989). Consequently, the covariant basis vector a1

can then be calculated as

a1 =
∂x
∂θ1

=
∑
k,l

x̄kl(t)B
′
k(θ

1)Bl(θ
2), (3.2)

where primed variables denote differentiation of single variable functions. The second
derivatives of the position vector are similarly calculated in order to evaluate the
Christoffel symbols, the curvature tensor and the surface gradient of the elastic
tensions that appear in (2.7). This method allows for direct calculation of � f , that is
continuous along the interface. In the method proposed by Pozrikidis (1995) for an
unstructured mesh, the single-layer integral is approximated in each element through
the product between the average traction discontinuity and the free space kernel.

At time t = 0, θ 1 and θ2 correspond to the azimuthal and meridional angles
θ and φ in spherical coordinates. The initially spherical shape is discretized with
n × m elements, corresponding to equal intervals of θ 1 and θ2. For the description
of any scalar variable, a total of (n+ 3) × (m +3) unknown spline coefficients are
required (Prenter 1989). For example, for each component of the interfacial velocity
v, the discrete form of (2.1) provides one equation per node. Additional conditions
follow from periodicity properties. In the present study, the surface of the sphere
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∆θ1
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r
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Figure 2. Polar co-ordinates (ξ, α) in the parametric domain (θ1, θ2) used to calculate the
1/r singular integral over the four neighbouring elements of the node x0.

was discretized with a minimum of 10 × 20 elements and a maximum of 50 × 100
elements.

The integral in (2.1) is calculated by means of regular Gaussian quadrature in
each element where kernel J is not singular. However, each node belongs to four
neighbouring elements in which the Euclidian distance r may vanish and where the
single-layer kernel J may become singular (see (2.2)). Even if the Gauss points, where
the integrand is calculated, never coincide with the nodes themselves, the distance r

becomes small enough to generate large errors in the integral. To prevent this drop
of accuracy, we calculate the integral in all the neighbouring elements using polar
coordinates (ξ, α) defined in the parametric domain (θ1, θ2), with the singular point
as the origin as shown in figure 2. This transformation introduces a Jacobian that
approaches zero as fast as r , thus eliminating the effect of the singularity in the
single-layer kernel.

Once the velocity is calculated, the nodes on the surface are convected through
numerical integration of (2.4) with a fourth-order accurate Runge–Kutta method.
Since the time integration is explicit, the stability of the numerical scheme restricts
the value of the time step �t . The latter must be decreased as mesh refinement
increases and as ε decreases (Diaz et al. 2000). Typical dimensionless time steps γ̇ �t

were taken in the range 10−4 to 10−2. Once numerical stability is established, reducing
the time step has no significant influence on the solution, indicating that the dominant
error is due to spatial discretization.

3.2. Validation of the numerical method

A set of numerical simulations is presented as a validation of the convergence and
accuracy of our numerical scheme. A comparison with previous numerical studies
is also presented. We focus on the case of an initially spherical capsule with a neo-
Hookean membrane placed in simple shear flow, an inherently three-dimensional flow
situation that was already studied in detail by Ramanujan & Pozrikidis (1998). The
undisturbed velocity field v∞ is given by

v∞
1 (x) = γ̇ x2; v∞

2 (x) = v∞
3 (x) = 0. (3.3)

Immersed in this flow field, the capsule elongates along a direction at an angle Φ

with respect to the flow direction, as a result of the torque exerted on it in the plane
of shear. After a transient stage, the membrane particles acquire a steady trajectory,
where the normal component of the interfacial velocity vanishes while the tangential
component remains finite. Consequently, the membrane material points exhibit a
continuous rotational motion along the steady deformed surface. This periodic tank-
treading motion has been captured numerically by Ramanujan & Pozrikidis (1998)
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Figure 3. Time evolution of the deformation D12 for different values of ε for a capsule with
an NH membrane in simple shear flow. For ε = 0.6, the two curves show the influence of the
initial position of the poles: on the x2-axis (solid line) and on the x1-axis (dashed line).

and by Navot (1998) as a function of capillary number. For moderate shear rates,
the deformed shape is close to an ellipsoid. The three-dimensional deformation can
be then measured by the Taylor parameter Dij

Dij =
|Li − Lj |
Li + Lj

(i, j = 1, 2, 3), (3.4)

where L1, L2 and L3 denote the three semi axis lengths of the ellipsoid that has the
same inertia tensor as the capsule. For any value of ε we follow the variation with
time of the deformation D12 in the shear plane as a function of time γ̇ t , until an
equilibrium value D∞

12 is reached (figure 3).
The case ε = 0.6, for which the capsule reaches a significant deformation of the

order of 50% is studied in detail. Computations were performed with different time
steps and different spatial grids. For a 20 × 40 mesh and dimensionless time steps
γ̇ �t decreased from 0.01 to 0.001, the equilibrium deformation values differed by
less than 10−5. Similarly, for γ̇ �t = 0.005, when the mesh was refined from 20 × 40
to 30 × 60 elements, the relative variation of D∞

12 was lower than 1.2% between
the coarser and finer grids. When the mesh was further refined from 30 × 60 to
40 × 80 elements, the difference in values of D∞

12 was less than 0.4%. An alternative
measurement of the accuracy of the numerical scheme is obtained by monitoring the
relative volume change of the capsule �V/V0, which should, of course, vanish since
the capsule is volume incompressible. For 30 × 60 and 40 × 80 elements, the relative
volume variation was of the order of 10−5 or less, even after long simulations (103 to
104 time steps). We thus conclude that the numerical method converges in time and
space.

The structured mesh introduces a heterogeneity in the element size over the capsule
interface. The influence of the initial position of the poles was studied by placing the



312 E. Lac, D. Barthès-Biesel, N. A. Pelekasis and J. Tsamopoulos

two poles in the plane of shear either on the x1- or on the x2-axis. As shown on figure 3,
there is no significant difference between the values of the steady deformation.
However, when the poles were placed on the x3-axis, an instability sets in. This effect
is also reported by Pozrikidis (1995).

Finally, we compared our results obtained with membrane constitutive law (2.8) to
those of Ramanujan & Pozrikidis (1998) for membrane constitutive law (2.9). Our
value of D∞

12 exceeds by 4% that of Ramanujan & Pozrikidis, because the strain energy
functions of the membrane are different in the large-deformation domain. However,
when we used our method to compute the deformation of a capsule that obeys law
(2.9), our values for D∞

12 are higher by about 1.3% than those of Ramanujan &
Pozrikidis. This may be attributed to the difference in numerical procedures. As was
also indicated by Ramanujan & Pozrikidis (1998), we note that the deformation of the
neo-Hookean membrane is slightly larger than that obtained with the zero-thickness
shell law.

4. Capsules in simple shear flow
We now investigate the dynamic behaviour of an initially spherical capsule in res-

ponse to an external simple shear flow with increasing magnitude of the imposed
shear rate. The poles are initially located on the x2-axis. The capsule first elongates
and then reaches an equilibrium state where the membrane material points rotate
continuously around the steady deformed shape. As an example, figure 3 shows the
time evolution of D12 for a range of values of ε and a neo-Hookean membrane. The
value of the equilibrium deformation parameter D∞

12 corresponds to the plateau of
the curves.

Some new results are also presented for a capsule with a membrane that obeys the
SK law, with three finite values of the area dilation modulus, corresponding to finite
values of C in the range [0.5, 10]. Values of C larger than 10 were not investigated be-
cause the stability of the numerical scheme requires smaller time steps as C increased,
thus leading to prohibitively long computing times. However, C =10 corresponds to
a membrane with an area dilation modulus 21 times larger than the shear modulus.
The dynamics of such a membrane are then dominated by near-area incompressibility
and reach an asymptotic state independent of the exact value of C (Barthès-Biesel
et al. 2002). Figure 4(a) shows the dependence of D∞

12 on ε for capsules with an
NH or an SK membrane, as well as the results of Ramanujan & Pozrikidis (1998).
According to the latter authors, the capsule always reaches a steady deformed shape,
irrespective of the shear rate level. We find instead that a stable equilibrium state is
obtained only within an interval [εL, εH ] of values of ε that depend on the membrane
constitutive law. The different behaviours that are observed are discussed in detail in
the following subsections.

4.1. Low shear rates (ε < εL)

The equilibrium deformation D∞
12 of a capsule is plotted as a function of the dimen-

sionless shear rate ε in figure 4(b) (insert) for small deformations. In this limit,
Barthès-Biesel & Rallison (1981) calculated an asymptotic expression of the steady
deformation, which was generalized later by Barthès-Biesel et al. (2002) to any value
of νs

D∞
12 =

5

4

2 + νs

1 + νs

ε. (4.1)
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Figure 4. Steady deformation D∞
12 as a function of capillary number ε for different membrane

laws; ‘R&P’ corresponds to results by Ramanujan & Pozrikidis (1998). Insert (b): zoom view
for small ε where dotted lines represent asymptotic predictions by Barthès-Biesel et al. (2002)
for νs =1/3 (SK C = 0.5), νs = 1/2 (NH, SK C = 1) and νs = 10/11 (SK C = 10); increasing νs

correspond to decreasing slopes.

This result is recovered within 2% up to ε =0.075, approximately for a capsule with a
NH membrane. For a capsule with a SK membrane and C = 1, the small ε results are
asymptotically identical to those obtained with the NH law (figure 4b). For C = 0.5
and 10, the numerical results also follow the predictions of the small deformation
theory (corresponding to νs = 0.33 and 0.909, respectively). For C = 10, the agreement
between the numerical and asymptotic values of D∞

12 is restricted to a much narrower
range of ε values, compared to the cases with C = 0.5 and 1 or with an NH membrane.

However, even when the deformation is small, the tank-treading motion of the
membrane could not be captured for a full circumvolution because of an instability
which is due to compression zones on the membrane, where at least one of the two
principal elastic tensions becomes negative. To illustrate the point, we study a capsule
with an NH membrane at a time when the equilibrium deformation plateau is reached.
The principal elastic tension distribution in the shear plane x1, x2 is represented as a
function of θ1 in figures 5(a) and 5(b) for a range of values of ε corresponding to
moderate deformations of the membrane. On this graph, direction 1 lies in the shear
plane and direction 2 is orthogonal to this plane. Tension T2 takes negative values in
the vicinity of the capsule equator where the membrane is compressed and tends to
buckle (see § 2.4).

Barthès-Biesel (1980) studied the deformation of an initially spherical capsule
suspended in a simple shear flow in the limit of small ε. To first order in ε, the load
on the membrane is given by

� f = 5µe · x
a

, (4.2)
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Figure 5. Principal tensions T1 and T2 in the shear plane (x1, x2) for different values of ε
(NH membrane); �, the analytical solution for ε = 0.0375.

where e is the rate of strain tensor of the undisturbed flow field. The equilibrium
equation (2.7) can be solved for a sphere and the components of the elastic tensions
(expressed in a unit vector basis) are given by

T θθ

Gs

=
5ε

2
sin 2φ,

T φθ

Gs

=
5ε

2
cos θ cos 2φ,

T φφ

Gs

= −5ε

2
cos2 θ sin 2φ, (4.3)
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(a) c)(b) ( (d)

Figure 6. Three-dimensional representation of a capsule in simple shear flow (ε =0.0375, NH
membrane); grey-level map represents the normal load qn (a) at γ̇ t = 0.9 and (b) at γ̇ t = 1.
(c) Buckling of an initially spherical capsule with an organosiloxane membrane in simple shear
flow (Walter et al. 2001). (d) Pre-inflated capsule at γ̇ t = 2.

where (r, θ, φ define spherical coordinates such that the positive x3 semi axis corres-
ponds to θ = 0 and the x1x3 plane corresponds to φ = 0. For membrane points in the
shear plane (θ = π/2), the principal tension values are

Tθ

Gs

=
5ε

2
sin 2φ,

Tφ

Gs

= 0. (4.4)

Thus, the asymptotic theory predicts that part of the membrane, corresponding to
φ ∈ [π/2, π] ∪ [3π/2, 2π] is under compression. With the numerical model notations,
T1 and T2 are equivalent to Tϕ and Tθ in the shear plane, respectively. For ε = 0.0375,
there is very good agreement between the asymptotic and numerical values of tension.
Indeed, T1 is very small and T2 follows closely the sinusoidal law (4.4), as shown on
figure 5(b). When ε increases, the asymptotic theory is no longer valid, but tension
T2 still takes negative values on part of the membrane located near the middle of
the elongated capsule. This occurs up to a limiting value of ε, roughly εL = 0.45.
Since there is no bending stiffness, the compressed membrane points tend to draw
nearer and eventually to overlap, and consequently the numerical model breaks down.
Numerically, the onset of buckling is detected by the appearance of oscillations in
the membrane point position that lead to the formation of folds. This behaviour is
illustrated on three-dimensional representations of the capsule obtained for ε = 0.0375
at times corresponding to the initial stage of the equilibrium plateau (figure 6a)
and shortly after (figure 6b). In figure 6(a, b), the grey-level mapping corresponds
to the normal load value which tends to oscillate near the capsule equator, thus
leading to local oscillation of one principal curvature sign. The compression of the
membrane occurs near the equator of the deformed capsule as predicted by the
asymptotic theory for vanishingly small values of ε. It should be pointed out that
since there is no bending resistance to determine a specific buckling wavelength, the
folds that are detected depend on the grid-point spacing and do not correspond to
the actual buckling phenomenon. However, folds do occur and have been observed
experimentally by Walter et al. (2001) who studied the deformation of spherical
artificial capsules suspended in simple shear flow. The capsule shown on figure 6(c)
has an initial radius of 343 µm and a membrane made of polysiloxane with a nearly
zero Poisson ratio, and thus with nearly equal values of shear and area dilation
modulus. The folds are indeed located also about the equator and have the same
orientation as those shown in figure 6(b).

We conclude that the instability is not of numerical origin, but is due to the sim-
plification used in the mechanical model of the interface when bending stiffness is
neglected. These negative elastic tensions were predicted long ago by the asymptotic
theory of Barthès-Biesel (1980) and have also been reported in the numerical findings
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NH SK (C = 0.5) SK (C = 1) SK (C = 10)
νs = 0.5; K/Gs = 3 νs = 0.333; K/Gs = 2 νs = 0.5; K/Gs = 3 νs = 0.909; K/Gs = 21

(a) εL = 0.45 εL = 0.8 εL = 0.4 εL = 0.06
(D∞

12)L = 0.47 (D∞
12)L = 0.5 (D∞

12)L = 0.37 (D∞
12)L = 0.09

εH = 0.63 εH ≈ 1.2 εH = 2.4 εH ≈ 7.5
(D∞

12)H = 0.53 (D∞
12)H ≈ 0.55 (D∞

12)H = 0.6 (D∞
12)H ≈ 0.61

(b) εL = 0.14 εL = 0.21 εL = 0.15 εL = 0.03
(D∞

12)L = 0.46 (D∞
12)L = 0.47 (D∞

12)L = 0.36 (D∞
12)L = 0.09

0.21< εH < 0.24 0.4 < εH < 0.53 0.6 < εH < 0.75 1.35< εH < 1.53
(D∞

12)H ≈ 0.57 (D∞
12)H ≈ 0.57 (D∞

12)H ≈ 0.6 (D∞
12)H ≈ 0.56

Table 1. Approximate stability domain for different membrane laws and flows. (a) Simple
shear flow, (b) planar hyperbolic flow. For ε < εL, the membrane buckles; for ε > εH , no
steady solution is obtained.

of Pozrikidis (1995). However, their significance regarding the stability of the solution
had not been appreciated until now. It should be noted also that the steady deforma-
tion obtained for small ε values by previous authors (Pozrikidis 1995; Ramanujan &
Pozrikidis 1998; Eggleton & Popel 1998) is always reported for small times, that is,
when equilibrium is first reached (as in figure 6a), but when oscillations have not yet
set in. Finally, a membrane that obeys Navot’s law is always undergoing extension,
as pointed out in § 2.3, and thus never shows any tendency towards buckling.

To stress this point, we have also studied the deformation of a pre-inflated capsule
in the range of small ε. Starting with a spherical capsule with unstressed radius a0, we
apply an internal pressure (equivalent to an osmotic pressure) that creates an isotropic
tension T p = 2K�a/a0 and increases the capsule radius by �a (�a � a0). The pre-
stressed capsule is then subjected to simple shear flow with ε = 0.0375, where ε is
based the new radius a0 + �a. For �a/a0 = 0.015, the pre-stress T p is just superior to
the minimum principal tension. The membrane is thus no longer under compression
and the capsule reaches an equilibrium deformed shape (figure 6d) without any folds.
The pre-stressed capsule stable deformation (D∞

12 = 0.068) is slightly smaller than the
unstable steady deformation (D∞

12 = 0.078) obtained for the unstressed capsule for the
same ε.

Accounting for a finite bending stiffness of the membrane (e.g. Pozrikidis 2001)
would probably also allow us to continue the computation until a steady deformed
shape is obtained (with or without folds, depending on the bending modulus). This
is, however, outside the scope of this study, but will be discussed briefly in § 7.

A capsule with a membrane that obeys the SK law exhibits the same tendency
towards buckling at low shear rates. The compressed zones are also located near
the equator. However, the limiting value εL and the corresponding equilibrium
deformation decrease as C increases, as shown in table 1. This may be attributed
to the strain-hardening behaviour of the SK membrane, for which higher tensions
develop for lower deformation as C increases.

4.2. High shear rates (ε > εH )

When the capillary number exceeds a value εH , the capsule does not reach a steady
deformation. According to our computations, εH = 0.75 is approximately the upper
bound for stable steady deformation of a capsule with a neo-Hookean membrane in
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Figure 7. (a) Deformation and (b) minimum and maximum principal tension in the membrane
for a capsule in simple shear flow (NH law, ε = 1.2 > εH ). The simulation was restarted from
the stable steady deformed shape obtained for ε = 0.6 at γ̇ t0 = 7; it diverges at γ̇ (t − t0) = 4
owing to compression (Tmin < 0).

simple shear flow. For ε > εH the capsule deformation increases with time without
bound and the numerical computation has to be stopped. Changing the initial posi-
tion of the poles, starting from the initial spherical shape or from a converged stable
equilibrium shape, all lead to the same conclusion. To illustrate the point, we start
from the stable equilibrium state (see figure 3) obtained for ε = 0.6 and a fine 40 × 80
mesh, and we increase ε to 1.2. The deformation D12 increases with time (figure 7a)
up to a value of about 0.65 and then diverges. The shapes obtained in this fashion
are very deformed owing to the large value of the capillary number and exhibit
protruded tips, as shown in figure 8(a) for ε = 1.2, a short time before the simulation
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(a) (b)

Figure 8. (a) Deformed capsule in simple shear flow for ε = 1.2 > εH , a few iterations before
the calculation diverges (NH membrane); (b) photograph of a nylon membrane capsule just
before burst (Chang & Olbricht 1993b).

breaks down. Such tips have also been observed experimentally by Chang & Olbricht
(1993b) right before the capsule breaks up (figure 8b), albeit for small values of the
viscosity ratio. To understand what happens, we have plotted the time evolution of the
minimum principal tension Tmin in the membrane. As shown in figure 7(b), the initial
value of Tmin is small but positive, but as the deformation increases, Tmin decreases to
negative values until buckling occurs and the computation has to be stopped. In this
case, the compression areas are not located near the equator of the deformed shape,
as observed for small shear rates, but appear near the tips. Consequently, buckling
occurs in the protruded areas and leads to an instability of the numerical scheme.
Compression is due to the torque exerted by the flow vorticity on the global deformed
profile of the capsule. Indeed, the torque applied to a slender deformed capsule leads
to flexural like deformation where parts of it undergo compression.

An issue can be raised regarding the ability of the numerical method to capture
large deformations accurately. Indeed, the largest steady deformation D∞

12 obtained
for an NH membrane capsule is about 56%, for ε = 0.75. In order to address this
issue, computations were performed for a spherical capsule with a membrane obeying
Navot’s (1998) elastic law, (2.11). As was pointed out, such a membrane is never
under compression. In particular, for ε = 1.8 (corresponding to p = 6 in Navot’s
simulations) a final deformation D∞

12 = 0.836 is obtained with our method (figure 9),
to be compared to Navot’s result D∞

12 = 0.83. Since the tensions are always positive,
the capsule does not buckle and reaches a steady equilibrium state with a tank-
treading motion. However, it was necessary to use 50 × 100 elements on the capsule
surface to compute accurately the geometry of the deformed membrane, owing to
high curvatures. This shows that the instability observed for an NH membrane when
ε > εH is of physical rather than numerical origin. Capsules with a membrane that
obeys the SK law, also have protruding tips where compression occurs for values of
ε larger than a critical value εH that increases with C, as shown in table 1.

At this point, it is important to consider certain issues in connection with the
study by Ramanujan & Pozrikidis (1998). These authors mention numerical problems
for capillary numbers larger than those for which a stable steady configuration was
obtained in the present study. They point out the importance of bending resistance
in avoiding them, but state that a critical shear rate does not exist and that the
capsule always exhibits a steady deformation. It should also be noted that when we
use the constitutive law (2.9) of Ramanujan & Pozrikidis (1998) we again find an
upper threshold εH for obtaining equilibrium shapes, which is slightly larger than
that found for NH membranes.
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Figure 9. Deformation vs. time of a capsule in simple shear flow, for a membrane obeying
law (2.11) with ε = 1.8. Insert: initial and steady deformed profiles in the shear plane at time
γ̇ t = 55.

(a) (b)

Figure 10. Three-dimensional representation of a capsule in simple shear flow (ε = 0.6, NH
membrane); (a) at t = 0, (b) at stable steady state.

4.3. Moderate shear rates (εL < ε <εH )

There exist values of capillary number for which stable equilibrium is reached. The
dynamic behaviour of a capsule in such conditions is described in this subsection. As
shown in figure 3, the computation can proceed for times γ̇ t very long compared to
the transient time between the start of the flow and the onset of the tank-treading
motion. A three-dimensional representation (figure 10) of the capsule shows that the
deformed shape is smooth without folds. Similarly, the equilibrium capsule profiles
for C = 1 are shown in figure 11 for different values of ε. As ε increases, the capsule
becomes more elongated in the plane of shear at steady state. The variation of D∞

12

as a function of ε is shown in figure 4(a) for different membrane laws. Owing to the
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Figure 11. Steady deformed profiles of a capsule in simple shear flow (SK membrane, C =1)
for ε =0, 0.0375, 0.075, 0.15, 0.3, 0.6, 1.2 and 2.1. The dashed lines show the unstable states
and the arrow indicates increasing values of ε.
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Figure 12. Inclination angle Φ with respect to the far flow field direction as a function of ε
for a capsule in simple shear flow.

strain hardening behaviour of the SK law, a capsule with an SK membrane is less
deformed than an NH capsule subjected to the same shear rate. This effect is more
pronounced as C increases, i.e. as the membrane becomes more area incompressible.
The inclination angle Φ with respect to the oncoming flow direction decreases owing
to the increasing torque exerted upon the capsule (figure 12a). Note that the strain
hardening effect delays the alignment of the capsule with streamlines.
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Figure 13. Capsule in simple shear flow; (a) trajectory of a membrane material point in the
shear plane (x1, x2) (ε = 0.6, NH law); ©, the last position of the point at dimensionless time
γ̇ t = 50, after two full circumvolutions in the shear plane; (b) coordinates x1/a (continuous
line) and x2/a (dashed line) of the material point as functions of time.

For stable situations (εL < ε < εH ), the motion of the capsule can be followed over
long times, corresponding to two full circumvolutions in most cases. This behaviour
is illustrated for an NH capsule by the trajectory of a membrane material point on
figure 13(a). Two periods of tank treading motion are covered, as shown by the time
variation of the coordinates of this point (figure 13b). It is then possible to determine
the period γ̇ T of the tank-treading motion from the time evolution of the position of
a membrane material point in the shear plane. When equilibrium is reached, i.e. when
the normal velocity of the membrane is less than 0.01γ̇ a everywhere, an instantaneous
value of γ̇ T can be obtained by integrating dl/|v| where dl is a line element over
the capsule profile in the (x1, x2)-plane. For stable equilibrium, the values of γ̇ T

computed with the two methods are identical within numerical errors (of about 2%).
The advantage of the second method is that it allows determination of a theoretical
rotation period, even when we could not observe it because of the buckling instability
discussed previously. The equilibrium rotation period is plotted as a function of ε and
membrane rheology on figure 14(a). We find that γ̇ T increases with ε and depends
on the membrane constitutive law (figure 14a). In particular, for the same ε, i.e. for
the same γ̇ and Gs , the rotation period decreases as C increases. This means that the
angular velocities of the two capsules are different and depend on C. Measuring the
period of the tank-treading motion as a function of ε may thus lead to the value of C.
The angular velocity of a rigid sphere (ε → 0) in a simple shear flow is ωO = γ̇ /2,
which corresponds to γ̇ T0 = 4π.

However, when γ̇ T is plotted as a function of the steady deformation D∞
12, all

points almost fall on the same curve (figure 14b). This suggests that the mean angular
velocity of the membrane only depends on the capsule deformation, which depends
in a nonlinear way on ε and membrane rheology (see figure 4). However, more results
would be necessary to confirm this trend.

In conclusion, there is only a window of values for ε for which stable equilibrium
shapes are obtained. Outside this range of values, buckling takes place and equilibrium
shapes either exist but are unstable (ε < εL) or do not exist (ε > εH ). To emphasize
this point, we have plotted in figure 15a, b) the minimum Tmin and maximum Tmax

values of the equilibrium principal tensions in the membrane as a function of ε for the
four membrane laws. For small values of ε, Tmin takes negative values (as predicted
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Figure 14. Tank-treading period as a function (a) of ε and (b) of D∞
12 for different membrane

laws; for ε =0, γ̇ T = 4π, corresponding to the rotation period of a rigid sphere in simple shear
flow.

by the asymptotic analysis), the membrane is compressed and the equilibrium shapes
are unstable. The limiting value εL reported in table 1, is inferred from this plot and
corresponds to the point where Tmin becomes positive. The process that increases Tmin



Spherical capsules in three-dimensional unbounded Stokes flows 323

0 2 4 6

0

1

2

0 6
0

4

8

12

16

20

0 0.5 1.0
–0.2

0

0.2

NH

SK C  = 0.5

1

10

(a)

(b)

(c)

(c)

Tmin

Gs

Tmax

Gs

42

ε

Figure 15. (a) Maximum and (b) minimum value of the principal tension in the membrane
vs. ε for a spherical capsule in simple shear flow.

is linked to the area dilation of the membrane. Indeed, for ε � 1 the area dilation
of the membrane is O(ε2). As ε increases, area dilatation is no longer negligible and
its contribution to the tensions is weighted by K . Correspondingly, the values of εL

decrease as C (or K/Gs) increases for an SK membrane, while the two values of εL are
very close for NH and SK (C =1) membranes that have the same area compression
modulus.

As ε becomes large, Tmax increases without bound, but Tmin first increases and starts
decreasing until it becomes negative. The second zero of Tmin gives approximately
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the value of εH , as reported in table 1. Tmin becomes negative for high deformation
because of the torsion of the overall deformed capsule caused by the viscous torque.
This effect is apparent in figure 8, where the tips of the capsule are bent out of
alignment.

At this point, we can now explain the effect of the initial position of the poles.
When the computation begins, the capsule is undergoing small deformation and the
membrane is under some compression for a short transient time, whatever the value
of ε. In simple shear flow, the nodes are convected along the membrane. If the con-
vection time is smaller than the advection time owing to compressive tension, the
numerical representation of the membrane can sustain some compression. The worst
situation occurs at the pole where the mesh size is smallest. Consequently, if the poles
are located on the x3-axis, they are quasi-stationary and subjected to compressive
tensions. Since there is nothing to prevent overlapping of the nodes near the poles, the
model breaks down quickly, even before any equilibrium can be reached. Depending
on whether the poles are located on the x1- or x2-axis, they are convected towards
or away from the compression area. For ε < εL, equilibrium can be reached, but the
instability sets in sooner in the first case. For ε > εL, the tensions quickly become all
positive and the pole position does not affect the equilibrium state of the capsule, as
shown in figure 3.

5. Capsules in planar hyperbolic flow
A planar hyperbolic flow is devoid of vorticity, and, as such, is simpler than the

shear flow studied previously. It can be generated experimentally in a four-roller flow
cell (Bentley & Leal 1986), where the velocity field in Cartesian coordinates is given
by

v∞
1 (x) = γ̇ x1, v∞

2 (x) = −γ̇ x2, v∞
3 (x) = 0. (5.1)

For symmetry reasons, a capsule centred in the flow (5.1) reaches an equilibrium
state (if any) where the membrane and the internal liquid are both motionless. The
viscosity ratio has thus no influence on the equilibrium state. The major axes of
the deformed profile are then aligned with the far flow directions x1, x2, x3 with
corresponding semi diameters L∞

1 , L∞
2 , L∞

3 . The Taylor deformation parameter Dij is
thus easily determined in each plane. To our knowledge, the large deformations of a
capsule have not been modelled in this flow.

For ε � 1, the asymptotic theory of Barthès-Biesel et al. (2002) predicts the following
values for flow (5.1)

L∞
1

a
= 1 +

5

2

2 + νs

1 + νs

ε,
L∞

2

a
= 1 − 5

2

2 + νs

1 + νs

ε,
L∞

3

a
= 1

D∞
12 =

5

2

2 + νs

1 + νs

ε, D∞
23 = D∞

13 =
1

2
D∞

12.


 (5.2)

The load on the membrane is given by (4.2), where the rate of strain now
corresponds to flow (5.1). The solution of the membrane equilibrium equations in the
spherical coordinate system defined in § 4.1, leads to the following asymptotic values
of the tensions in the membrane

T θθ

Gs

= 5ε cos 2φ,
T φθ

Gs

= −5ε cos θ sin 2φ,
T φφ

Gs

= −5ε cos2 θ cos 2φ. (5.3)
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Figure 16. Capsule in hyperbolic flow (SK membrane – C = 1); time evolution of D12 for
(a) ε = 0.03 < εL, (b) ε =0.45, (c) ε =0.6 and (d) ε = 0.75 > εH . Inserts: deformed capsule for
ε = 0.03 at γ̇ t = 0.87 and for ε = 0.45 at γ̇ t = 5.

As compared to (4.3), the φ-dependency of the tension is different in hyperbolic flow
because of the different orientation of the capsule with respect to the external flow.
Negative tensions are thus also found in the membrane. For example, for membrane
points in the extension plane x1, x2 (θ = π/2), the only non-zero principal tension
Tθ/Gs = 5ε cos 2φ acts in a direction perpendicular to the extension plane and is
compressive in the middle of the capsule corresponding to

φ ∈
[

π

4
,
3π

4

]
∪

[
5π

4
,
7π

4

]
.

To illustrate the different phenomena, we discuss the case of a capsule with an SK
(C = 1) membrane. Figure 16 shows the time evolution of the deformation D12 in the
extension plane x1, x2 for typical values of ε. As for simple shear flow, the capsule
reaches equilibrium after an initial transient phase. For small values of ε (ε < εL,
here εL = 0.15), the equilibrium state is unstable because of compressive tensions.
The membrane shows a tendency to buckle, as shown in figure 16(a). Again, since
there is zero bending rigidity, the folds depend on the grid points position and do
not model the actual buckling modes of the membrane, but indicate the location of
the compression zones. A detailed study of the tension distribution in the membrane
shows that there exist negative principal tensions located in the vicinity of the
deformed capsule equator. For small values of ε, the asymptotic and numerical values
of the tensions are in agreement. As ε increases, the maximum Tmax and minimum
Tmin values of the principal tensions increase. Eventually, Tmin which was originally
negative, changes sign and that determines the value εL. For ε > εL, the principal
tensions are then positive everywhere in the membrane. This case is illustrated for
ε = 0.45 in figure 16(b), where the capsule reaches an equilibrium that is stable over
long times. The membrane maximum velocity |vmax/aγ̇ | is of the order of 10−5 at
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(a) (b)

Figure 17. Capsule in hyperbolic flow. Identical stable equilibrium profiles (bottom) are
reached for two different initial positions of the grid poles (top); SK law – C =1, ε = 0.45,
γ̇ t = 5, D∞

12 = 0.55.

(a)

x1

x2(b)

Figure 18. (a) (x1, x2) profile of a capsule in hyperbolic flow for ε =0.75 > εH (SK C = 1
law) before the simulation diverges; (b) photograph of a polylysine membrane capsule at burst
(Barthès-Biesel 1991).

γ̇ t = 8. The corresponding capsule profile is smooth (figure 16b). Changing the initial
position of the poles changes neither the deformed profile nor its stability (figure 17).
Again, the position of the poles has no influence, provided they are not located in the
compression zone. If not, since the nodes move only during the transient phase, the
instability sets in quickly and it is not possible to reach the equilibrium state. Starting
from this equilibrium state, we increase ε to ε = 0.6 (figure 16c). After a transient
phase, the capsule reaches another steady equilibrium shape, which is identical to
the one we would obtain starting from the initial spherical shape. When we increase
ε past a limiting value εH (here 0.6 <εH < 0.75), we cannot find any equilibrium
state (figure 16d). Figure 18(a) shows what happens for ε = 0.75: the capsule develops
high-curvature protruded ends, and the deformation and the tensions in the membrane
increase without bound. We thus observe a process of continuous extension, well-
documented for liquid droplets. Barthès-Biesel (1991) also reports protruded shapes
(figure 18b) for polylysine membrane capsules just before burst. The same features are
observed for SK (C = 0.5, 1, 10) membranes as well as NH membranes. The values of
the two limits εL and εH depend on membrane properties and on flow type, as shown
in table 1. As for simple shear flow and for the same reasons, the limit εL decreases
as K/Gs increases.

The value εH is approximate and lies within an interval between the last stable and
first unstable situation that we obtained. No attempt was made to determine εH with
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Figure 19. Capsule in plane hyperbolic flow. Semi axis lengths L∞
1 , L∞

2 , L∞
3 as functions of

ε for different membrane laws: (a) NH; (b) SK (C =0.5); (c) SK (C = 1); (d) SK (C =10).
Dotted lines show asymptotic predictions.

greater precision. The value of deformation (D∞
12)H corresponds to the last stable de-

formation. It should be noted that the interval [εL, εH ] is small for capsules with an
NH membrane.

It is of interest to discuss the equilibrium state of the capsule as a function of
membrane properties. In the case of an SK (C = 1) membrane, the equilibrium values
of the capsule semi diameters L∞

1 , L∞
2 , L∞

3 (obtained before the instability sets in
when ε < εL) are shown as a function of ε in figure 19(c). The asymptotic results are
recovered within a few per cent up to ε = 0.03–0.04 for L∞

1 and L∞
2 , but not for L∞

3 ,
for which the asymptotic theory predicts the constant value a. The deformation of the
capsule is three-dimensional. As expected, in the (x1, x2)-plane, the profile is elongated
along x1 and flattened along x2. However, in the transverse (x2, x3)-plane, the profile
is more elongated along x3 than along x2, which was not obvious a priori. This feature
is also observed for SK (C = 0.5, 10) and for NH membranes, although the stable
equilibrium range is small in the latter case. The equilibrium values of L∞

1 , L∞
2 , L∞

3 ,
are shown as functions of ε in figures 19(a, b, d) for the NH and SK (C = 0.5 and 10)
laws. From these values, it is easy to compute the values of the Taylor deformation
in each plane.

For values of ε outside the range of validity of the asymptotic theory, large deforma-
tions (over 50%) are observed in the (x1, x2)-plane where D12 seems to increase
continuously. The strain-hardening effect of the SK law leads to larger values of
ε (i.e. larger values of the shear rate γ̇ ) for C = 10 than for C = 1 to obtain the
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Figure 20. Spherical capsule in plane hyperbolic flow. Deformation as a function of ε
for different membrane laws. Experimental data by (a) Chang & Olbricht (1993a) and
(b) Barthès-Biesel (1991). The dotted line represents the asymptotic prediction used to rescale
the experimental ε.

same deformation. In the transverse plane x2, x3, the two semi-diameters L∞
2 and

L∞
3 , and thus the deformation D∞

23, tend to level off as ε increases. This effect is
observed for lower values of ε as C increases. Another view of the effect of membrane
constitutive law is shown in figure 20 where D∞

12 is plotted as a function of ε for
all four membrane laws. There are two experimental studies of the deformation
of capsules in such a flow, with nylon (Chang & Olbricht 1993a) or polylysine
membranes (Barthès-Biesel 1991). Since the viscosity ratio λ has no influence on the
steady deformations D∞

ij , we can compare our numerical results to experimental data,
even if we have assumed λ= 1. The results of Barthès-Biesel (1991) and of Chang &
Olbricht (1993a) are thus also shown in figure 20. A difficulty lies in the proper
determination of Gs , and thus of ε. Indeed, Chang & Olbricht (1993a) evaluated the
value of Gs either from compression experiments on a capsule, or from the initial
slope of the deformation versus shear rate curve (as was done in figure 20). The two
values could differ by 30%. For polylysine membrane capsules, the value of Gs is
determined only from the initial slope of the deformation curve. Barthès-Biesel (1991)
reports the appearance of protruded ends for a capsule with a polylysine membrane
(figure 18b) where the membrane is punctured and some of the internal liquid is
expelled. However, such lemon-shaped profiles are observed experimentally for values
of ε much smaller than εH for NH or SK membranes. Chang & Olbricht (1993a)
do not report any breakup for capsules with a nylon membrane in hyperbolic flow,
but observe substantial permanent plastic deformation during the elongation process.
This may be the reason why the final deformation seems to reach a plateau. A plastic
behaviour of the membrane material is not accounted for in our model, and this may
explain why the fit between numerical predictions and experiments is not better. For
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Figure 21. (a) Side view of a capsule deformed in axisymmetric elongational flow a
few iterations before the calculation diverges (ε = 0.09 <εL, NH membrane). (b) Principal
tensions in (x1, x2)-plane; left-right symmetry is broken in the region where T2 < 0, i.e. for
0.2 < θ1/π < 0.8.

low shear rate, membrane folding is not reported for any type of capsule. This may be
linked to poor optical resolution of the observation system, or to the flexural rigidity
of the membrane owing to a finite thickness. It is clear that more experimental results
are required for this type of flow.

6. Capsules in axisymmetric elongational flow
An axisymmetric elongational flow is given in Cartesian coordinates by

v∞
1 (x) = 2γ̇ x1, v∞

2 (x) = −γ̇ x2, v∞
3 (x) = −γ̇ x3. (6.1)

Barthès-Biesel et al. (2002) studied the deformation of an initially spherical capsule
suspended in a flow field described by (6.1). They took advantage of the problem
axisymmetry to first integrate (2.1) in the azimuthal direction and to reduce it to a
line integral along a meridian curve of the capsule interface. The capsule profile was
thus a priori assumed to be axisymmetric and the principal directions of deformation
and tension were along the meridian and parallel lines. No buckling instability was
detected because the meridian lines were always stretched, and equilibrium solutions
were obtained for values of ε lower than an upper limit. Here, we remove the
axisymmetry constraint and treat the problem as three-dimensional.

Stable situations were encountered only for capsules with an SK (C = 10) membrane.
In this case, the three-dimensional simulations are in very good agreement with the ax-
isymmetric model. There is less than 1% difference on the value of D∞

12 in the range
of capillary numbers where a stable steady state was obtained. We estimate this
window of stability to lie between εL = 0.02 and εH = 0.76. For the NH law or the
SK (C = 1) law, corresponding to more deformable membranes, the axisymmetry of
the flow always generates negative tensions and we could not find a value for εL.
The typical response of the capsule is illustrated for an NH membrane with ε = 0.09.
Figure 21(b) shows the values of the principal tensions in the (x1, x2)-plane, as a
function of θ1 measured along the meridian. We find negative values of tension T2

along parallel lines in the vicinity of the capsule equator. The capsule membrane
thus tends to buckle in this area as shown in figure 21(a) and the computation must



330 E. Lac, D. Barthès-Biesel, N. A. Pelekasis and J. Tsamopoulos

be terminated. In the axisymmetric model of Barthès-Biesel et al. (2002), negative hoop
tensions were also obtained, but their influence on the three-dimensional stability of
the problem was ignored.

Similar situations occur when a capsule is flowing into a cylindrical tube where
axisymmetry is also assumed. Compressive tensions may then appear in the azimuthal
direction, as well as in some parts of the meridians, particularly at the back of the
capsule. Diaz & Barthès-Biesel (2002) then found it necessary to add some bending
resistance to the membrane in order to stabilize the shape of the capsule. When the
bending modulus is small enough, the front part of the capsule profile, the liquid film
thickness around it and the additionnal pressure drop are only slightly modified. This
indicates that a small amount of bending resistance can be enough to sustain the
compressive tensions that arise in the membrane without affecting substantially the
shape of the capsule deformed profile. Obviously, as the bending rigidity is increased
the shape of the capsule will be changed, as shown by Kwak & Pozrikidis (2001) or
by Pozrikidis (2001).

7. Discussion
Based on three different flow situations and two commonly used membrane con-

stitutive laws, we have shown that a simple membrane behaviour where bending
resistance is neglected limits the numerical simulations to situations where the model
is physically correct. This is a recurring theme of this study that persists when
membranes described by different laws are considered under various three-dimensional
Stokes flow patterns.

It is of interest to compare the behaviour of the capsule in simple shear and plane
hyperbolic flow. As the shear rate is measured differently in the two flows, we use the
equilibrium deformation in the shear plane as a comparison parameter. The maximum
and minimum values of principal tensions in the membrane are then plotted as a
function of D∞

12 for NH and SK (C = 0.5, 1, 10) laws in figure 22. We then find almost
identical dependence of Tmax and Tmin upon D∞

12 for simple shear and plane hyperbolic
flow. This is because the capsule is stretched in a similar fashion in both flows: along
the x1-axis in the hyperbolic case and along a direction making the angle Φ with the
streamlines in the simple shear case (see figure 12). The maximum principal tension
Tmax is positive and increases without any clear bound as D∞

12 and thus ε increases.
The minimum principal tension behaves differently: Tmin first decreases to negative
values for small deformation (as predicted by the asymptotic analysis) and then, as
D∞

12 increases, Tmin increases and becomes positive. The D∞
12 value for which Tmin is zero

corresponds to ε = εL. For both flows, the change of sign of Tmin occurs for very close
values (D∞

12)L of deformation for a given membrane constitutive law (table 1). The
corresponding values of εL are different because the shear rate is not evaluated in the
same way. Except for the SK (C = 10) law, there is no simple correspondence (such as
a 1/2 factor, as might be expected from the asymptotic tension values) between the
values of εL in simple shear and plane hyperbolic flows. This is probably because εL

corresponds to high enough values of the capillary number where the simple linear
asymptotic theory no longer applies and where the deformation mechanics are already
nonlinear. However, for an SK membrane with C = 10, the value of (D∞

12)L is small
enough for the asymptotic analysis to apply, and we indeed find that εL for simple
shear is half of εL for hyperbolic flow.

As ε and D∞
12 increase, Tmin increases without any apparent bound for hyperbolic

flow, but suddenly starts decreasing and tends to become negative again in simple
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Figure 22. (a) Maximum and (b) minimum value of the principal tension in the membrane
vs. D∞

12; comparison between the simple shear flow (dashed lines) and the planar hyperbolic
flow (solid lines). In insert, ∗ points to SK (C = 0.5) law; ∗∗ points to NH law.

shear flow (figure 22). For large values of D∞
12, the capsule is very elongated and has

a large curvature at the tips. The difference between the two flows is attributed to
the torque that is present in simple shear and absent in hyperbolic flow. The exerted
torque tends to bend the whole capsule, thus leading to a distortion of the overall
shape where the tips are out of alignment (figure 9) and where negative tensions
appear in the bent parts of the capsule near the tips. The value (D∞

12)H for which Tmin

becomes negative again determines the value εH for simple shear flow. In the case of
hyperbolic flow, such a simple criterion cannot be found, εH must be determined by
trial and error and (D∞

12)H corresponds to the last stable deformation we computed.
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The comparison between the two flows then leads to the conclusion that the large
ε behaviour is essentially identical in both cases: the capsule undergoes continuous
extension past a critical value εH of shear rate. However, for simple shear flow, the
combination of very protruded shapes and viscous torque leads to compressed zones
in the capsule interface where the simplified membrane model breaks down and
buckling occurs. In both flows, we find roughly the same critical value (D∞

12)H . This
unique dependency on D∞

12 is surprising since the Taylor deformation parameter is
a global deformation measure that is insensitive to homothetic scaling. Furthermore,
capsule response to hydrodynamic stresses is a three-dimensional nonlinear process
that involves two flow fields (internal and external) for simple shear and only the
external flow for plane hyperbolic flow.

We can also use these results to assess the effect of membrane constitutive law on
the capsule dynamics. For SK law with different values of C, we find that (D∞

12)L and
εL decrease as C and surface Poisson ratio νs increase (see table 1), i.e. as the area
dilation modulus K increases. We can also compare NH and SK (C = 1) laws, that
have the same small-deformation behaviour, but different large-deformation effects.
We find that the values of εL and (D∞

12)L are close for both the simple shear and the
planar hyperbolic flow, indicating that εL could be a function of the elastic constants
Gs and K (and/or Gs and νs).

The maximum stable deformation is of the same order for all membrane laws
and for the two flows. However, the corresponding upper limit εH increases as C

increases, and depends on the type of flow. This may be because ε measures the
ratio of viscous to shear elastic stresses and accounts for neither the area dilation
modulus nor for nonlinear large-deformation behaviour (such as strain hardening).
This appears clearly when comparing the values of εH for NH and SK (C = 1)
membranes. Although the two laws have the same small-deformation values of Gs

and K , they lead to different large-deformation behaviours where NH law is strain
softening whereas SK law is strain hardening. It follows that the value of εH for the
SK (C = 1) membrane is about three times larger than the value of εH for the NH
membrane.

We showed that compressive tensions on the membrane rendered the well-known
equilibrium shapes unstable, giving rise to what looked like a wrinkled shape. The
asymptotic theory predicts the appearance of negative tensions in any external flow
situation for small enough capillary numbers, but is unable to give the maximum
value εL until this occurs. Only the numerical model can do so. Since the membrane
has no flexural rigidity, it buckles as soon as the tensions become compressive. The
source of errors, and consequently of the deviation from the equilibrium shape, is
located at the nodes of the surface and this explains why the wrinkle wavelength is
locally dependent on the mesh size. It would thus be interesting to add some bending
resistance to the membrane in order to model the buckling of the interface. As
shown by shell and plate stability theory (Timoshenko & Gere 1961), the wavelength
of a buckling instability tends to zero as the bending modulus vanishes. However,
predicting numerically the first instability mode in small deformations with a proper
shell model will presumably be very costly for numerical stability reasons. Indeed,
to be able to capture a buckling mode of wavelength 2h, we require a mesh with
characteristic size smaller than h. In terms of numerical stability, we saw that the
time step �t had to be decreased as h decreases. Consequently, a small bending
modulus implies a small wrinkle wavelength, which finally requires a fine mesh and a
small time step to capture the instability. On the other hand, if we try to shorten the
computation by reducing the number of elements in the mesh, we require a larger
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bending modulus to capture a larger wavelength. However, according to Pozrikidis
(2001) the value of the bending modulus further reduces �t owing to the additional
rigidity of the structure. We can thus expect that the time step will always have to be
extremely small, especially in the domain of small deformations since a small value of
ε is another factor that reduces �t . Wrinkles have been observed experimentally for
some capsules undergoing small deformations (Walter et al. 2001). In the experiments,
the wrinkled shape of the capsule is stable, because the membrane has a small finite-
bending resistance corresponding to a non-zero thickness. The measurement of the
wrinkle wavelength coupled to a proper model of capsule deformation including
bending rigidity may then be a good way to determine the bending modulus of such
thin membranes. Note that the capsule buckling that arises for ε < εL (i.e. when shear
is small, compared to elasticity) resembles the elastically driven instabilities regularly
observed in viscoelastic flows at high Deborah numbers (i.e. high elasticity compared
to shear). For example, in annular extrusion flows, a standing wave is caused by
gravity pulling the extruded annular film downward, a phenomenon that Schaul,
Hannon & Wissbrun (1975) called pleating or curtaining because of the film shape.
The grooves wavelength and amplitude depend on the extrusion conditions and fluid
properties (Giesekus 1972; Piau, El Kissi & Tremblay 1990). Here, instead of gravity
pulling down a film, we have weak shear forces stretching a capsule membrane.

For large shear rates (ε > εH ), equilibrium shapes could not be obtained, irrespective
of the membrane constitutive law and the position of the poles. This phenomenon
is not due to numerical errors in the evaluation of the membrane deformation, since
stable steady elongated shapes, with high curvature and a deformation D∞

12 larger
than 80% could be obtained for the membrane constitutive law proposed by Navot
(1998), that precludes the development of compressive stresses. As shown by Pozrikidis
(2001), adding bending resistance changes the shape of the capsule for a given value
of ε by decreasing the tip curvature, among other effects. However, if the shear rate
is increased to high enough levels, it is not clear whether bending resistance can
prevent the process of continuous elongation and global shape distortion altogether.
It might be conjectured that the stability interval will be shifted to lower εL and higher
εH when bending resistance is included. This point needs more investigation, but is
in contradiction to Ramanujan & Pozrikidis (1998), who concluded that there is no
critical shear rate beyond which steady deformation is not observed and attributed the
findings of Pozrikidis (1995) to numerical error.
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